Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1537, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378731

ABSTRACT

Cepharanthine is a secondary metabolite isolated from Stephania. It has been reported that it has anti-conronaviruses activities including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we assemble three Stephania genomes (S. japonica, S. yunnanensis, and S. cepharantha), propose the cepharanthine biosynthetic pathway, and assess the antiviral potential of compounds involved in the pathway. Among the three genomes, S. japonica has a near telomere-to-telomere assembly with one remaining gap, and S. cepharantha and S. yunnanensis have chromosome-level assemblies. Following by biosynthetic gene mining and metabolomics analysis, we identify seven cepharanthine analogs that have broad-spectrum anti-coronavirus activities, including SARS-CoV-2, Guangxi pangolin-CoV (GX_P2V), swine acute diarrhoea syndrome coronavirus (SADS-CoV), and porcine epidemic diarrhea virus (PEDV). We also show that two other genera, Nelumbo and Thalictrum, can produce cepharanthine analogs, and thus have the potential for antiviral compound discovery. Results generated from this study could accelerate broad-spectrum anti-coronavirus drug discovery.


Subject(s)
Alphacoronavirus , Benzodioxoles , Benzylisoquinolines , Stephania , Animals , Swine , China/epidemiology , SARS-CoV-2 , Antiviral Agents/pharmacology
2.
J Med Virol ; 95(8): e29031, 2023 08.
Article in English | MEDLINE | ID: mdl-37561639

ABSTRACT

Omicron BF.7 became the predominant SARS-CoV-2 variant in Beijing after the abolishment of Zero-COVID policy in December 2022. The ability of antibodies elicited by BF.7 infection to cross-react with SARS-CoV-2-like viruses is unknown. This study aimed to investigate the cross-reactive neutralizing antibodies against SARS-CoV-2-related pangolin coronavirus GX_P2V in sera from vaccinated and/or SARS-CoV-2-infected individuals. All vaccinated individuals who recovered from Omicron BF.7 breakthrough infections exhibited substantially higher levels of neutralizing antibodies against GX_P2V, compared to other subject groups, with a geometric mean titer (GMT) of 362. Uninfected individuals who received four-mixed-dose vaccines also demonstrated higher levels of neutralizing antibodies (GMT = 44) against GX_P2V than those uninfected individuals who received two- or three-dose vaccines and those unvaccinated convalescents of wild-type SARS-CoV-2. This study highlights the significance of prior vaccinations with wild-type SARS-CoV-2 vaccines in generating potent cross-protective immunity against future spillovers of SARS-CoV-2-like viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , SARS-CoV-2/genetics , Antibodies, Neutralizing , Pangolins , Breakthrough Infections , COVID-19 Vaccines , Antibodies, Viral
3.
Molecules ; 28(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37446681

ABSTRACT

Cepharanthine, a natural bisbenzylisoquinoline (BBIQ) alkaloid isolated from the plant Stephania Cephalantha Hayata, is the only bisbenzylisoquinoline alkaloid approved for human use and has been used in the clinic for more than 70 years. Cepharanthine has a variety of medicinal properties, including signaling pathway inhibitory activities, immunomodulatory activities, and antiviral activities. Recently, cepharanthine has been confirmed to greatly inhibit SARS-CoV-2 infection. Therefore, we aimed to describe the pharmacological properties and mechanisms of cepharanthine, mainly including antitumor, anti-inflammatory, anti-pathogen activities, inhibition of bone resorption, treatment of alopecia, treatment of snake bite, and other activities. At the same time, we analyzed and summarized the potential antiviral mechanism of cepharanthine and concluded that one of the most important anti-viral mechanisms of cepharanthine may be the stability of plasma membrane fluidity. Additionally, we explained its safety and bioavailability, which provides evidence for cepharanthine as a potential drug for the treatment of a variety of diseases. Finally, we further discuss the potential new clinical applications of cepharanthine and provide direction for its future development.


Subject(s)
Alkaloids , Benzylisoquinolines , COVID-19 , Humans , SARS-CoV-2 , Benzylisoquinolines/pharmacology , Alkaloids/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
4.
J Med Virol ; 95(1): e28281, 2023 01.
Article in English | MEDLINE | ID: mdl-36329614

ABSTRACT

Breast milk has been found to inhibit coronavirus infection, while the key components and mechanisms are unknown. We aimed to determine the components that contribute to the antiviral effects of breastmilk and explore their potential mechanism. Lactoferrin (Lf) and milk fat globule membrane inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related coronavirus GX_P2V and transcription- and replication-competent SARS-CoV-2 virus-like particles in vitro and block viral entry into cells. We confirmed that bovine Lf (bLf) blocked the binding between human angiotensin-converting enzyme 2 and SARS-CoV-2 spike protein by combining receptor-binding domain (RBD). Importantly, bLf inhibited RNA-dependent RNA polymerase (RdRp) activity of both SARS-CoV-2 and SARS-CoV in vitro in the nanomolar range. So far, no biological macromolecules have been reported to inhibit coronavirus RdRp. Our result indicated that bLf plays a major role in inhibiting viral replication. bLf treatment reduced viral load in lungs and tracheae and alleviated pathological damage. Our study provides evidence that bLf prevents SARS-CoV-2 infection by combining SARS-CoV-2 spike protein RBD and inhibiting coronaviruses' RdRp activity, and may be a promising candidate for the treatment of coronavirus disease 2019.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Humans , Cricetinae , SARS-CoV-2/metabolism , Lactoferrin/pharmacology , Lactoferrin/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/metabolism
5.
Emerg Microbes Infect ; 11(1): 2658-2669, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36153659

ABSTRACT

The binding of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein onto human angiotensin-converting enzyme 2 (ACE2) is considered as the first step for the virus to adhere onto the host cells during the infection. Here, we investigated the adhesion of spike proteins from different variants and ACE2 using single-molecule and single-cell force spectroscopy. We found that the unbinding force and binding probability of the spike protein from Delta variant to the ACE2 were the highest among the variants tested in our study at both single-molecule and single-cell levels. As the most popular variants, the Omicron variants have slightly higher unbinding force to the ACE2 than wild type. Molecular dynamics simulation showed that ACE2-RBD (Omicron BA.1) complex is destabilized by the E484A and Y505H mutations and stabilized by S477N and N501Y mutations, when compared with Delta variant. In addition, a neutralizing antibody, produced by immunization with wild type spike protein, could effectively inhibit the binding of spike proteins from wild type, Delta and Omicron variants (BA.1 and BA.5) onto ACE2. Our results provide new insight for the molecular mechanism of the adhesive interactions between spike protein and ACE2 and suggest that effective monoclonal antibody can be prepared using wild type spike protein against different variants.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Mutation
6.
MedComm (2020) ; 3(3): e172, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35992968

ABSTRACT

Since the start of the coronavirus disease 2019 (COVID-19) pandemic, new variants of severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) have emerged, accelerating the spread of the virus. Omicron was defined by the World Health Organization in November 2021 as the fifth "variant of concern" after Alpha, Beta, Gamma, and Delta. In recent months, Omicron has become the main epidemic strain. Studies have shown that Omicron carries more mutations than Alpha, Beta, Gamma, Delta, and wild-type, facilitating immune escape and accelerating its transmission. This review focuses on the Omicron variant's origin, transmission, main biological features, subvariants, mutations, immune escape, vaccination, and detection methods. We also discuss the appropriate preventive and therapeutic measures that should be taken to address the new challenges posed by the Omicron variant. This review is valuable to guide the surveillance, prevention, and development of vaccines and other therapies for Omicron variants. It is desirable to develop a more efficient vaccine against the Omicron variant and take more effective measures to constrain the spread of the epidemic and promote public health.

7.
Adv Biol (Weinh) ; 6(12): e2200148, 2022 12.
Article in English | MEDLINE | ID: mdl-35775953

ABSTRACT

Recently, the inhibiting effects of a clinically approved drug Cepharanthine on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have attracted widespread attention and discussion. However, the public does not understand the relevant research progress very well. This paper aims to introduce a brief history of studies on the effects of cepharanthine against SARS-CoV-2, including "discovery of anti-SARS-CoV-2 activity of cepharanthine in vitro", "potential mechanisms of cepharanthine against SARS-CoV-2", "confirmation of cepharanthine's anti-SARS-CoV-2 activity in vivo", "potential approaches for improving the druggability of cepharanthine" and "clinical trials of cepharanthine treating SARS-CoV-2 infection". Taken together, cepharanthine is believed to be a promising old drug for coronavirus disease-19 (COVID-19) therapy.


Subject(s)
Benzylisoquinolines , COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology
8.
J Hazard Mater ; 430: 128414, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35149493

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a worldwide public health emergency, and the high transmission of SARS-CoV-2 variants has raised serious concerns. Efficient disinfection methods are crucial for the prevention of viral transmission. Herein, pulse power-driven cold atmospheric plasma (CAP), a novel sterilization strategy, was found to potently inactivate SARS-CoV-2-like coronavirus GX_P2V, six strains of major epidemic SARS-CoV-2 variants and even swine coronavirus PEDV and SADS-CoV within 300 s (with inhibition rate more than 99%). We identified four dominant short-lived reactive species, ONOO-, 1O2, O2- and·OH, generated in response to CAP and distinguished their roles in the inactivation of GX_P2V and SARS-CoV-2 spike protein receptor binding domain (RBD), which is responsible for recognition and binding to human angiotensin-converting enzyme 2 (hACE2). Our study provides detailed evidence of a novel surface disinfection strategy for SARS-CoV-2 and other coronaviruses.


Subject(s)
COVID-19 , Plasma Gases , Animals , COVID-19/prevention & control , Disinfection , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine
10.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34180984

ABSTRACT

Targeting the interaction between severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)-receptor-binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) is believed to be an effective strategy for drug design to inhibit the infection of SARS-CoV-2. Herein, several ultrashort peptidase inhibitors against the RBD-ACE2 interaction were obtained by a computer-aided approach based on the RBD-binding residues on the protease domain (PD) of ACE2. The designed peptides were tested on a model coronavirus GX_P2V, which has 92.2 and 86% amino acid identity to the SARS-CoV-2 spike protein and RBD, respectively. Molecular dynamics simulations and binding free energy analysis predicted a potential binding pocket on the RBD of the spike protein, and this was confirmed by the specifically designed peptides SI5α and SI5α-b. They have only seven residues, showing potent antiviral activity and low cytotoxicity. Enzyme-linked immunosorbent assay result also confirmed their inhibitory ability against the RBD-ACE2 interaction. The ultrashort peptides are promising precursor molecules for the drug development of Corona Virus Disease 2019, and the novel binding pocket on the RBD may be helpful for the design of RBD inhibitors or antibodies against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19 Drug Treatment , Peptides/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/chemistry , Binding Sites/drug effects , COVID-19/genetics , COVID-19/virology , Drug Design , Humans , Molecular Dynamics Simulation , Peptides/genetics , Peptides/therapeutic use , Protein Binding/drug effects , Protein Domains/drug effects , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...